所谓的内容,因为可以通过项目的部分或损坏的版本召回了所谓的内容,因为存储的项目显示了几乎完美的召回少数低于容量的信息密集模式和“记忆悬崖”以外,因此插入单个模式会导致所有存储模式的灾难性丧失。我们提出了一种新颖的CAM架构,具有异质关联(网格)的内存支架(网格),它分配了内部吸引力动力学的问题,并与外部内容相关联,以生成无记忆悬崖的凸轮连续性:少量的模式以完整的信息恢复匹配标准存储凸轮同时插入更多模式仍会导致每种模式的部分回忆,并在模式数和模式丰富度之间进行优雅的权衡。网格是由大脑中肠道海马的内存电路的架构激励的,是一种三方结构,具有成对相互作用,使用了一组预定的内部稳定状态,以及内部状态和任意外部模式之间的异性关联。我们通过分析和实验表明,对于任何数量的存储模式,网格几乎可以饱和cam网络的总信息(由突触的数量给出),表现优于所有现有的CAM模型。
translated by 谷歌翻译
Mixup is a popular data augmentation technique for training deep neural networks where additional samples are generated by linearly interpolating pairs of inputs and their labels. This technique is known to improve the generalization performance in many learning paradigms and applications. In this work, we first analyze Mixup and show that it implicitly regularizes infinitely many directional derivatives of all orders. We then propose a new method to improve Mixup based on the novel insight. To demonstrate the effectiveness of the proposed method, we conduct experiments across various domains such as images, tabular data, speech, and graphs. Our results show that the proposed method improves Mixup across various datasets using a variety of architectures, for instance, exhibiting an improvement over Mixup by 0.8% in ImageNet top-1 accuracy.
translated by 谷歌翻译
Context is vital for commonsense moral reasoning. "Lying to a friend" is wrong if it is meant to deceive them, but may be morally okay if it is intended to protect them. Such nuanced but salient contextual information can potentially flip the moral judgment of an action. Thus, we present ClarifyDelphi, an interactive system that elicits missing contexts of a moral situation by generating clarification questions such as "Why did you lie to your friend?". Our approach is inspired by the observation that questions whose potential answers lead to diverging moral judgments are the most informative. We learn to generate questions using Reinforcement Learning, by maximizing the divergence between moral judgements of hypothetical answers to a question. Human evaluation shows that our system generates more relevant, informative and defeasible questions compared to other question generation baselines. ClarifyDelphi assists informed moral reasoning processes by seeking additional morally consequential context to disambiguate social and moral situations.
translated by 谷歌翻译
Pre-trained language models, despite their rapid advancements powered by scale, still fall short of robust commonsense capabilities. And yet, scale appears to be the winning recipe; after all, the largest models seem to have acquired the largest amount of commonsense capabilities. Or is it? In this paper, we investigate the possibility of a seemingly impossible match: can smaller language models with dismal commonsense capabilities (i.e., GPT-2), ever win over models that are orders of magnitude larger and better (i.e., GPT-3), if the smaller models are powered with novel commonsense distillation algorithms? The key intellectual question we ask here is whether it is possible, if at all, to design a learning algorithm that does not benefit from scale, yet leads to a competitive level of commonsense acquisition. In this work, we study the generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce a novel commonsense distillation framework, I2D2, that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale models as the teacher model by two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model's own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-Tomic, that is of the largest and highest quality available to date.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Metric learning aims to learn distances from the data, which enhances the performance of similarity-based algorithms. An author style detection task is a metric learning problem, where learning style features with small intra-class variations and larger inter-class differences is of great importance to achieve better performance. Recently, metric learning based on softmax loss has been used successfully for style detection. While softmax loss can produce separable representations, its discriminative power is relatively poor. In this work, we propose NBC-Softmax, a contrastive loss based clustering technique for softmax loss, which is more intuitive and able to achieve superior performance. Our technique meets the criterion for larger number of samples, thus achieving block contrastiveness, which is proven to outperform pair-wise losses. It uses mini-batch sampling effectively and is scalable. Experiments on 4 darkweb social forums, with NBCSAuthor that uses the proposed NBC-Softmax for author and sybil detection, shows that our negative block contrastive approach constantly outperforms state-of-the-art methods using the same network architecture. Our code is publicly available at : https://github.com/gayanku/NBC-Softmax
translated by 谷歌翻译
Fusing camera with LiDAR is a promising technique to improve the accuracy of 3D detection due to the complementary physical properties. While most existing methods focus on fusing camera features directly with raw LiDAR point clouds or shallow 3D features, it is observed that direct deep 3D feature fusion achieves inferior accuracy due to feature misalignment. The misalignment that originates from the feature aggregation across large receptive fields becomes increasingly severe for deep network stages. In this paper, we propose PathFusion to enable path-consistent LiDAR-camera deep feature fusion. PathFusion introduces a path consistency loss between shallow and deep features, which encourages the 2D backbone and its fusion path to transform 2D features in a way that is semantically aligned with the transform of the 3D backbone. We apply PathFusion to the prior-art fusion baseline, Focals Conv, and observe more than 1.2\% mAP improvements on the nuScenes test split consistently with and without testing-time augmentations. Moreover, PathFusion also improves KITTI AP3D (R11) by more than 0.6% on moderate level.
translated by 谷歌翻译
With advances in deep learning model training strategies, the training of Point cloud classification methods is significantly improving. For example, PointNeXt, which adopts prominent training techniques and InvResNet layers into PointNet++, achieves over 7% improvement on the real-world ScanObjectNN dataset. However, most of these models use point coordinates features of neighborhood points mapped to higher dimensional space while ignoring the neighborhood point features computed before feeding to the network layers. In this paper, we revisit the PointNeXt model to study the usage and benefit of such neighborhood point features. We train and evaluate PointNeXt on ModelNet40 (synthetic), ScanObjectNN (real-world), and a recent large-scale, real-world grocery dataset, i.e., 3DGrocery100. In addition, we provide an additional inference strategy of weight averaging the top two checkpoints of PointNeXt to improve classification accuracy. Together with the abovementioned ideas, we gain 0.5%, 1%, 4.8%, 3.4%, and 1.6% overall accuracy on the PointNeXt model with real-world datasets, ScanObjectNN (hardest variant), 3DGrocery100's Apple10, Fruits, Vegetables, and Packages subsets, respectively. We also achieve a comparable 0.2% accuracy gain on ModelNet40.
translated by 谷歌翻译
Bio-inspired learning has been gaining popularity recently given that Backpropagation (BP) is not considered biologically plausible. Many algorithms have been proposed in the literature which are all more biologically plausible than BP. However, apart from overcoming the biological implausibility of BP, a strong motivation for using Bio-inspired algorithms remains lacking. In this study, we undertake a holistic comparison of BP vs. multiple Bio-inspired algorithms to answer the question of whether Bio-learning offers additional benefits over BP, rather than just biological plausibility. We test Bio-algorithms under different design choices such as access to only partial training data, resource constraints in terms of the number of training epochs, sparsification of the neural network parameters and addition of noise to input samples. Through these experiments, we notably find two key advantages of Bio-algorithms over BP. Firstly, Bio-algorithms perform much better than BP when the entire training dataset is not supplied. Four of the five Bio-algorithms tested outperform BP by upto 5% accuracy when only 20% of the training dataset is available. Secondly, even when the full dataset is available, Bio-algorithms learn much quicker and converge to a stable accuracy in far lesser training epochs than BP. Hebbian learning, specifically, is able to learn in just 5 epochs compared to around 100 epochs required by BP. These insights present practical reasons for utilising Bio-learning rather than just its biological plausibility and also point towards interesting new directions for future work on Bio-learning.
translated by 谷歌翻译
Emerging real-time multi-model ML (RTMM) workloads such as AR/VR and drone control often involve dynamic behaviors in various levels; task, model, and layers (or, ML operators) within a model. Such dynamic behaviors are new challenges to the system software in an ML system because the overall system load is unpredictable unlike traditional ML workloads. Also, the real-time processing requires to meet deadlines, and multi-model workloads involve highly heterogeneous models. As RTMM workloads often run on resource-constrained devices (e.g., VR headset), developing an effective scheduler is an important research problem. Therefore, we propose a new scheduler, SDRM3, that effectively handles various dynamicity in RTMM style workloads targeting multi-accelerator systems. To make scheduling decisions, SDRM3 quantifies the unique requirements for RTMM workloads and utilizes the quantified scores to drive scheduling decisions, considering the current system load and other inference jobs on different models and input frames. SDRM3 has tunable parameters that provide fast adaptivity to dynamic workload changes based on a gradient descent-like online optimization, which typically converges within five steps for new workloads. In addition, we also propose a method to exploit model level dynamicity based on Supernet for exploiting the trade-off between the scheduling effectiveness and model performance (e.g., accuracy), which dynamically selects a proper sub-network in a Supernet based on the system loads. In our evaluation on five realistic RTMM workload scenarios, SDRM3 reduces the overall UXCost, which is a energy-delay-product (EDP)-equivalent metric for real-time applications defined in the paper, by 37.7% and 53.2% on geometric mean (up to 97.6% and 97.1%) compared to state-of-the-art baselines, which shows the efficacy of our scheduling methodology.
translated by 谷歌翻译